
Synopsis Tutorial
Stefan Seefeld

Synopsis Tutorial
Stefan Seefeld

Table of Contents
1. Introduction .. 1

1.1. Inspecting Code ... 1
1.2. Internal Representations .. 1
1.3. Documenting Source-Code .. 2
1.4. The Synopsis Processing Pipeline ... 3

2. Using the synopsis tool .. 5
2.1. Option Handling .. 5
2.2. Parsing Source-code ... 5
2.3. Emulating A Compiler .. 6
2.4. Using Comments For Documentation .. 7

3. Scripting And Extending Synopsis ... 9
3.1. The ASG .. 9
3.2. The Processor class .. 10
3.3. Composing A Pipeline .. 11
3.4. Writing your own synopsis script .. 12

3.4.1. Importing all desired processors ... 14
3.4.2. Composing new processors .. 14
3.4.3. Defining New Processors .. 14
3.4.4. Exposing The Commands .. 14

4. Processor Design .. 15
4.1. The Python Parser .. 15
4.2. The IDL Parser .. 15
4.3. The Cpp Parser .. 15
4.4. The C Parser ... 17
4.5. The Cxx Parser .. 17
4.6. The Linker .. 17
4.7. Comment Processors .. 17

4.7.1. Comment Filters .. 17
4.7.2. Comment Translators ... 18
4.7.3. Transformers .. 18

4.8. The Dump Formatter .. 19
4.9. The DocBook Formatter .. 19
4.10. The Dot Formatter .. 19
4.11. The HTML Formatter .. 20
4.12. The SXR Formatter ... 22

A. Description of program options for the synopsis executable .. 23
B. Listing of some Processors and their parameters ... 25

B.1. Synopsis.Parsers.Python.Parser .. 25
B.2. Synopsis.Parsers.IDL.Parser .. 25
B.3. Synopsis.Parsers.Cpp.Parser .. 25
B.4. Synopsis.Parsers.C.Parser ... 26
B.5. Synopsis.Parsers.Cxx.Parser .. 26
B.6. Synopsis.Processors.Linker ... 26
B.7. Synopsis.Processors.MacroFilter .. 26
B.8. Synopsis.Processors.Comments.Filter .. 27
B.9. Synopsis.Processors.Comments.Translator ... 27
B.10. Synopsis.Formatters.Dot.Formatter ... 27
B.11. Synopsis.Formatters.Dump.Formatter .. 27
B.12. Synopsis.Formatters.DocBook.Formatter .. 28
B.13. Synopsis.Formatters.Texinfo.Formatter .. 28
B.14. Synopsis.Formatters.HTML.Formatter ... 28

iii

B.15. Synopsis.Formatters.SXR.Formatter .. 29
C. Supported Documentation Markup .. 31

C.1. Javadoc .. 31
C.2. ReStructured Text .. 32

iv

Synopsis Tutorial

List of Examples
1.1. Typical C++ code documentation .. 2
1.2. Python code documentation ... 3
C.1. C++ code snippet using Javadoc-style comments. .. 32
C.2. C++ code snippet using ReST-style comments. .. 33

v

Chapter 1. Introduction
Synopsis is a source code introspection tool. It provides parsers for a variety of programming languages
(C, C++, Python, IDL), and generates internal representations of varying granularity. The only stable rep-
resentation, which is currently used among others to generate documentation, is an Abstract Semantic
Graph.

This tutorial is focussed on the ASG and the concepts around it. Other representations are presently being
worked on, notably in relation to the C++ parser. To learn more about those (Parse Tree, Symbol Table,
etc.) see the Developer's Guide1.

1.1. Inspecting Code

1.2. Internal Representations
Synopsis parses source code into a variety of internal representations (IRs), which then are manipulated
in various ways, before some output (such as a cross-referenced API documentation) is generated by an
appropriate formatter.

At the core of Synopsis are a set of programming-language independent IRs which all parser frontends
generate. One of these representations is the Abstract Semantic Graph, which stores declarations and their
relationships. Another is the SXR Symbol Table, which stores information about symbols and their use in
the source code. Other representations exist (such as the C++ Parse Tree), but they are not yet stored in a
publicly accessible form.

For details about the ASG, see Section 3.1, “The ASG”

1 ../DevGuide/index.html

1

../DevGuide/index.html

At this time, the C++ frontend's IRs (PTree, SymbolTable, etc.) are not yet accessible through python,
though they eventually will be, making it possible to use Synopsis as a source-to-source compiler. To learn
more about the evolving C & C++ parser and its IRs, see the Developer's Guide2.

1.3. Documenting Source-Code
Being read and understood is at least as important for source code as it is for it to be processed by a computer.
Humans have to maintain the code, i.e. fix bugs, add features, etc.

Therefor, typically, code is annotated in some form in that adds explanation if it isn't self-explanatory.
While comments are often used to simply disable the execution of a particular chunk of code, some com-
ments are specifically addressed at readers to explain what the surrounding code does. While some languages
(e.g. Python) have built-in support for doc-strings, in other languages ordinary comments are used.

Typically, comments are marked up in a specific way to discriminate documentation from ordinary com-
ments. Further the content of such comments may contain markup for a particular formatting (say, embedded
HTML).

Example 1.1. Typical C++ code documentation

C++ may contain a mix of comments, some representing documentation.

//! A friendly function.
void greet()
{
 // FIXME: Use gettext for i18n
 std::cout << "hello world !" << std::endl;
}
 \

In Synopsis all declarations may be annotated. C and C++ parsers, for example, will store comments pre-
ceding a given declaration in that declaration's annotations dictionary under the key comments.
Later these comments may be translated into documentation (stored under the key doc), which may be
formatted once the final document is generated.

Translating comments into doc-strings involves the removal of comment markers (such as the //! above),
as well as the handling of processing instructions that may be embedded in comments, too.

For languages such as Python such a translation isn't necessary, as the language has built-in support for
documentation, and thus the parser itself can generate the 'doc' annotations.

2 ../DevGuide/index.html

2

Introduction

../DevGuide/index.html

Example 1.2. Python code documentation

Python has support for documentation built into the language.

>>> def greet():
... """The greet function prints out a famous message."""
... print 'hello world !'
...
>>>help(greet)

Help on function greet in module __main__:

greet()
 The greet function prints out a famous message.
 \

1.4.The Synopsis Processing Pipeline
Synopsis provides a large number of processor types that all generate or operate on data extracted from
source code. Parsers parse source code from a variety of languages, linkers combine multiple IRs, resolving
cross-references between symbols, and formatters format the ASG into a variety of output media.

A typical processing-pipeline to generate API Documentation with source-code cross-references.

3

Introduction

All these Processor types share a common design, to make it easy to combine them into pipelines, and add
custom processors. For more documentation about this architecture, see Section 3.3, “Composing A
Pipeline”.

4

Introduction

Chapter 2. Using the synopsis tool
In this section we are going to explore the possibilities to generate documentation from source code. We
will demonstrate how to use synopsis standalone as well as in conjunction with existing build systems.
Further, we will see how to adapt synopsis to your coding and commenting style, as well as how to generate
the output in a format and style that fulfills your needs.

2.1. Option Handling
The synopsis tool combines three optional types of processors: parsers (specified with the -p option),
linker processors (specified with the -l option, and formatters (specified with the -f option). If a parser
is selected, any input is interpreted as source files of the respective language. Otherwise it will be read in
as a stored IR. Similarly, if a formatter is selected, output is generated according to the formatter. Otherwise
it will contain a stored IR.

For all of the three main processors, arguments can be passed down using the -W. For example, to find out
what parameters are available with the Cxx parser, use the --help option:

$ synopsis -p Cxx -h
Parameters for processor 'Synopsis.Parsers.Cxx.Parser':
 profile output profile data
 cppflags list of preprocessor flags such as -I or -D
 preprocess whether or not to preprocess the input
 ...
 \

Then, to pass a preprocess option, either of:

synopsis -p Cxx -Wp,--preprocess ...

synopsis -p Cxx -Wp,preprocess=True ...

The first form expects an optional string argument, while the second form expects a python expression,
thus allowing to pass python objects such as lists. (But be careful to properly escape characters to get the
expression through the shell !)

But passing options via the command line has its limits, both, in terms of usability, as well as for the ro-
bustness of the interface (all data have to be passed as strings !). Therefor, for any tasks demanding more
flexibility a scripting interface is provided, which will be discussed in the next chapter.

2.2. Parsing Source-code
Let's assume a simple header file, containing some declarations:

#ifndef Path_h_
#define Path_h_

//. A Vertex is a 2D point.
struct Vertex
{
 Vertex(double xx, double yy): x(xx), y(yy) {}

5

 double x; //.< the x coordinate
 double y; //.< the y coordinate
};

//. Path is the basic abstraction
//. used for drawing (curved) paths.
class Path
{
public:
 virtual ~Path() {}
 //. Draw this path.
 virtual void draw() = 0;
 // temporarily commented out...
 // bool intersects(const Path &);
private:
};

#endif

 \

Process this with

synopsis -p Cxx -f HTML -o Paths Path.h

to generate an html document in the directory specified using the -o option, i.e. Paths.

The above represents the simplest way to use synopsis. A simple command is used to parse a source-file
and to generate a document from it. The parser to be used is selected using the -p option, and the formatter
with the -f option.

If no formatter is specified, synopsis dumps its internal representation to the specified output file. Similarly,
if no parser is specified, the input is interpreted as an IR dump. Thus, the processing can be split into
multiple synopsis invocations.

Each processor (including parsers and formatters) provides a number of parameters that can be set from
the command line. For example the Cxx parser has a parameter base_path to specify a prefix to be
stripped off of file names as they are stored in synopsis' internal representation. Parser-specific options
can be given that are passed through to the parser processor. To pass such an option, use the -Wp, prefix.
For example, to set the parser's base_path option, use

synopsis -p Cxx -Wp,--base-path=<prefix> -f HTML -o Paths Path.h

2.3. Emulating A Compiler
Whenever the code to be parsed includes system headers, the parser needs to know about their location(s),
and likely also about system macro definitions that may be in effect. For example, parsing:

#include <vector>
#include <string>

typedef std::vector<std::string> option_list;
 \

6

Using the synopsis tool

requires the parser to know where to find the vector and string headers.

Synopsis will attempt to emulate a compiler for the current programming language. By default, synopsis
-p Cxx will try to locate c++ or similar, to query system flags. However, the compiler can be specified
via the --emulate-compiler option, e.g. synopsis -p Cxx -Wp,--emulate-com-
piler=/usr/local/gcc4/bin/g++.

All languages that use the Cpp processor to preprocess the input accept the emulate-compiler argument,
and pass it down to the Cpp parser. See Section 4.3, “The Cpp Parser” for a detailed discussion of this
process.

2.4. Using Comments For Documentation
Until now the generated document didn't contain any of the text from comments in the source code. To do
that the comments have to be translated first. This translation consists of a filter that picks up a particular
kind of comment, for example only lines starting with "//.", or javadoc-style comments such as "/**...*/",
as well as some translator that converts the comments into actual documentation, possibly using some inline
markup, such as Javadoc or ReST.

The following source code snippet contains java-style comments, with javadoc-style markup. Further, an
embedded processing instruction wants some declarations to be grouped.

#ifndef Bezier_h_
#define Bezier_h_

#include "Path.h"
#include <vector>

namespace Paths
{

/**
 * The Bezier class. It implements a Bezier curve
 * for the given order.
 */
template <size_t Order>
class Bezier : public Path
{
public:
 /** Create a new Bezier.*/
 Bezier();

 /** @group Manipulators {*/

 /**
 * Add a new control point.
 * @param p A point
 */
 void add_control_point(const Vertex &);

 /**
 * Remove the control point at index i.
 * @param i An index

7

Using the synopsis tool

 */
 void remove_control_point(size_t i);
 /** }*/
 virtual void draw();
private:
 /** The data...*/
 std::vector<Vertex> controls_;
};

}

#endif

 \

The right combination of comment processing options for this code would be:

synopsis -p Cxx --cfilter=java --translate=javadoc -lComments.Grouper ...

The --cfilter option allows to specify a filter to select document comments, and the --translate
option sets the kind of markup to expect. The -l option is somewhat more generic. It is a linker to which
(almost) arbitrary post-processors can be attached. Here we pass the Comments.Grouper processor that
injects Group nodes into the IR that cause the grouped declarations to be documented together.

8

Using the synopsis tool

Chapter 3. Scripting And Extending
Synopsis

Often it isn't enough to provide textual options to the synopsis tool. The processors that are at the core of
the synopsis framework are highly configurable. They can be passed simple string / integer / boolean type
parameters, but some of them are also composed of objects that could be passed along as parameters.

While synopsis provides a lot of such building blocks already, you may want to extend them by subclassing
your own.

In all these cases scripting is a much more powerful way to let synopsis do what you want. This chapter
explains the basic design of the framework, and demonstrates how to write scripts using the built-in
building blocks as well as user extensions

3.1.The ASG
At the core of synopsis is a representation of the source code to be analyzed called an Abstract Semantic
Graph (ASG). Language-specific syntax gets translated into an abstract graph of statements, annotated
with all the necessary metadata to recover the important details during further processing.

At this time only one particular type of statements is translated into an ASG: declarations. This can be
declarations of types, functions, variables, etc. Attached to a declaration is a set of comments that was
found in the source code before the declaration. It is thus possible to provide other metadata (such as code
documentation) as part of these comments. A variety of comment processors exist to extract such metadata
from comments.

9

3.2.The Processor class
The Processor class is at the core of the Synopsis framework. It is the basic building block out of which
processing pipelines can be composed.

The requirement that processors can be composed into a pipeline has some important consequences for its
design. The process method takes an ir argument, which it will operate on, and then return. It is this ir
that forms the backbone of the pipeline, as it is passed along from one processor to the next. Additionally,
parameters may be passed to the processor, such as input and output.

10

Scripting And Extending Synopsis

def process(self, ir, **keywords):

 self.set_parameters(keywords)
 self.ir = self.merge_input(ir)

 # do the work here...

 return self.output_and_return_ir()

Depending on the nature of the processor, it may parse the input file as source code, or simply read it in
from a persistent state. In any case, the result of the input reading is merged in with the existing asg.

def process(self, ir, **keywords):

 self.set_parameters(keywords)

 for file in self.input:
 self.ir = parse(ir, file))

 return self.output_and_return_ir()

Similarly with the output: if an output parameter is defined, the ir may be stored in that file before it is re-
turned. Or, if the processor is a formatter, the output parameter may indicate the file / directory name to
store the formatted output in.

def process(self, ir, **keywords):

 self.set_parameters(keywords)
 self.ir = self.merge_input(ir)

 self.format(self.output)

 return self.ir

3.3. Composing A Pipeline
With such a design, processors can simply be chained together:

A parser creates an IR, which is passed to the linker (creating a table of contents on the fly) which passes
it further down to a formatter.

parser = ...
linker = ...
formatter = ...

11

Scripting And Extending Synopsis

ir = IR()
ir = parser.process(ir, input=['source.hh'])
ir = linker.process(ir)
ir = formatter.process(ir, output='html')

And, to be a little bit more scalable, and to allow the use of dependency tracking build tools such as make,
the intermediate IRs can be persisted into files. Thus, the above pipeline is broken up into multiple pipelines,
where the 'output' parameter of the parser is used to point to IR stores, and the 'input' parameter of the
linker/formatter pipeline then contains a list of these IR store files.

Parse source1.hh and write the IR to source1.syn:

parser.process(IR(), input = ['source1.hh'], output = 'source1.syn')

Parse source2.hh and write the IR to source2.syn:

parser.process(IR(), input = ['source2.hh'], output = 'source2.syn')

Read in source1.syn and source2.syn, then link and format into the html directory:

formatter.process(linker.process(IR(), input = ['source1.syn', \
'source2.syn']), output = 'html')

3.4. Writing your own synopsis script
The synopsis framework provides a function process that lets you declare and expose processors as
commands so they can be used per command line:

#
Copyright (C) 2006 Stefan Seefeld
All rights reserved.
Licensed to the public under the terms of the GNU LGPL (>= 2),
see the file COPYING for details.
#

from Synopsis.process import process
from Synopsis.Processor import Processor, Parameter, Composite

12

Scripting And Extending Synopsis

from Synopsis.Parsers import Cxx
from Synopsis.Parsers import Python
from Synopsis.Processors import Linker
from Synopsis.Processors import Comments
from Synopsis.Formatters import HTML
from Synopsis.Formatters import Dot
from Synopsis.Formatters import Dump

class Joker(Processor):

 parameter = Parameter(':-)', 'a friendly parameter')

 def process(self, ir, **keywords):
 # override default parameter values
 self.set_parameters(keywords)
 # merge in IR from 'input' parameter if given
 self.ir = self.merge_input(ir)

 print 'this processor is harmless...', self.parameter

 # write to output (if given) and return IR
 return self.output_and_return_ir()

cxx = Cxx.Parser(base_path='../src')

ss = Comments.Translator(filter = Comments.SSFilter(),
 processor = Comments.Grouper())
ssd_prev = Comments.Translator(filter = Comments.SSDFilter(),
 processor = Composite(Comments.Previous(),
 Comments.Grouper()))
javadoc = Comments.Translator(markup='javadoc',
 filter = Comments.JavaFilter(),
 processor = Comments.Grouper())
rst = Comments.Translator(markup='rst',
 filter = Comments.SSDFilter(),
 processor = Comments.Grouper())

process(cxx_ss = Composite(cxx, ss),
 cxx_ssd_prev = Composite(cxx, ssd_prev),
 cxx_javadoc = Composite(cxx, javadoc),
 cxx_rst = Composite(cxx, rst),
 link = Linker(),
 html = HTML.Formatter(),
 dot = Dot.Formatter(),
 joker = Joker(parameter = '(-;'))

 \

With such a script synopsis.py it is possible to call

python synopsis.py cxx_ssd --output=Bezier.syn Bezier.h
 \

13

Scripting And Extending Synopsis

to do the same as in Chapter 2, Using the synopsis tool, but with much more flexibility. Let's have a closer
look at how this script works:

3.4.1. Importing all desired processors
As every conventional python script, the first thing to do is to pull in all the definitions that are used later
on, in our case the definition of the process function, together with a number of predefined processors.

3.4.2. Composing new processors
As outlined in Section 3.3, “Composing A Pipeline”, processors can be composed into pipelines, which
are themselfs new (composite) processors. Synopsis provides a Composite type for convenient pipeline
construction. Its constructor takes a list of processors that the process method will iterate over.

3.4.3. Defining New Processors
New processors can be defined by deriving from Processor or any of its subclasses. As outlined in Sec-
tion 3.2, “The Processor class”, it has only to respect the semantics of the process method.

3.4.4. Exposing The Commands
With all these new processrs defined, they need to be made accessible to be called per command line. That
is done with the process function. It sets up a dictionary of named processors, with which the script can
be invoked as

python synopsis.py joker
 \

which will invoke the joker's process method with any argument that was provided passed as a named
value (keyword).

14

Scripting And Extending Synopsis

Chapter 4. Processor Design
4.1.The Python Parser

The Python parser expects Python source files as input, and compiles them into an Abstract Semantic
Graph. At this time, this compilation is based purely on static analysis (parsing), and no runtime-inspection
of the code is involved.

This obviously is obviously only of limitted use if objects change at runtime.

The found docstrings are identified and attached to their corresponding objects. If a docformat specifier
is provided (either in terms of a __docformat__ variable embedded into the Python source or the
definition of the parser's default_docformat parameter, this format is used to parse and format the
given docstrings.

Here are the available Python-Parser parameters:

primary_file_only If false, in addition to the primary python file imported modules are parsed,
too, if they are found.

base_path A prefix (directory) to strip off of the Python code filename.

sxr_prefix If this variable is defined, it points to a directory within which the parser will
store cross-referenced source code. This information may be used to render
the source code with cross-references during formatting.

default_docformat Specify the doc-string format for the given python file. By default doc-strings
are interpreted as plaintext, though other popular markup formats exist, such
as ReStructuredText (rst), or JavaDoc (javadoc)

4.2.The IDL Parser
The IDL parser parses CORBA IDL.

4.3.The Cpp Parser
The Cpp parser preprocesses IDL, C, and C++ files. As any normal preprocessor, it will generate a file
suitable as input for a C or C++ parser, i.e. it processes include and macro statements. However, it will
store the encountered preprocessor directives in the ASG for further analysis.

As the list of included files may grow rather large, two mechanisms exist to restrict the number of files for
which information is retained. The primary_file_only parameter is used to indicate that only the top-level
file being parsed should be included. The base_path parameter, on the other hand, will restrict the number
files if main_file_only is set to False. In this case, the base_path is used as a prefix, and only those file
whose name starts with that prefix are marked as main.

For each included file, a SourceFile object is created and added to the parent's Include list. Further, all
macro declarations, as well as macro calls, are recorded. While most useful in conjunction with the C and
Cxx processors, these data can be of use stand-alone, too. For example consider a tool that reports file de-
pendencies based on #include statements. The Dot formatter (see Section 4.10, “The Dot Formatter”) can
generate a file dependency graph from the Cpp processor output alone:

15

Whenever the code to be parsed includes system headers, the parser needs to know about their location(s),
and likely also about system macro definitions that may be in effect.

The Cpp parser provides two parameters to specify this emulation process, emulate_compiler and
compiler_flags. To illustrate their use, let us probe for the system flags that get generated:

> synopsis --probe -p Cpp -Wp,--emulate-compiler=g++
Compiler: g++
Flags:
Language: C++
Header search path:
 /usr/lib/gcc/i386-redhat-linux/4.1.2/../../../../include/c++/4.1.2
 ...
 /usr/include

Macro definitions:
 __STDC__=1
 __cplusplus=1
 ...
 \

Sometimes it isn't enough to have the compiler name itself. Some flags may modify the header search path,
or the predefined macros. For example, GCC can be instructed not to consider system headers at all:

> synopsis --probe -p Cpp -Wp,--emulate-compiler=g++ \
-Wp,compiler-flags=[\"-nostdinc\"]
Compiler: g++
Flags: -nostdinc
Language: C++
Header search path:

Macro definitions:
 __STDC__=1
 __cplusplus=1
 ...
 \

16

Processor Design

Here, the set of predefined header search paths is empty. Note, that the --compiler-flags option
(which, as you may remember, maps to the compiler_flags processor parameter) expects a (Python)
list. Therefor, we use the form without the leading dashes, so we can pass Python code as argument (See
Section 2.1, “Option Handling” for details), with appropriate quoting.

For details about the parameters see Section B.3, “Synopsis.Parsers.Cpp.Parser”.

4.4.The C Parser
The C parser parses C.

The C parser parses C source-code. If the preprocess parameter is set, it will call the preprocessor (see
Section 4.3, “The Cpp Parser”). It generates an ASG containing all declarations.

4.5.The Cxx Parser
The Cxx parser parses C++. If the preprocess parameter is set, it will call the preprocessor (see Section 4.3,
“The Cpp Parser”). Its main purpose is to generate an ASG containing all declarations. However, it can
store more detailed information about the source code to be used in conjunction with the HTML parser to
generate a cross-referenced view of the code. The sxr_prefix parameter is used to indicate the directory
within which to store information about the source files being parsed.

4.6.The Linker
The Linker recursively traverses the ASG using the Visitor pattern, and replaces any duplicate types with
their originals, and removes duplicate declarations. References to the removed declarations are replaced
with a reference to the original.

There are many additional transformations that may be applied during linking, such as the extraction of
documentation strings from comments, the filtering and renaming of symbols, regrouping of declarations
based on special annotations, etc., etc..

4.7. Comment Processors
Comments are used mainly to annotate source code. These annotations may consist of documentaton, or
may contain processing instructions, to be parsed by tools such as Synopsis.

Processing comments thus involves filtering out the relevant comments, parsing their content and translating
it into proper documentation strings, or otherwise perform required actions (such as ASG transformations).

Here are some examples, illustrating a possible comment-processing pipeline.

4.7.1. Comment Filters
To distinguish comments containing documentation, it is advisable to use some convention such as using
a particular prefix:

//. Normalize a string.
std::string normalize(std::string const &);
// float const pi;

17

Processor Design

//. Compute an area.
float area(float radius);
 \

Using the ssd(read: Slash-Slash-Dot) prefix filter instructs Synopsis only to preserve those comments
that are prefixed with //.

synopsis -p Cxx --cfilter=ssd ...

Synopsis provides a number of built-in comment filters for frequent / popular prefixes. Here are some ex-
amples:

option nameFilter classComment prefix
ssSSFilter//
sssSSSFilter///
ssdSSDFilter//.
cCFilter/*...*/
qtQtFilter/*!...*/
javaJavaFilter/**...*/

4.7.2. Comment Translators
Once all irrelevant comments have been stripped off, the remainder needs to be transformed into proper
documentation. As the actual formatting can only be performed during formatting (at which time the output
medium and format is known), there are still things that can be done at this time: Since in general it isn't
possible to auto-detect what kind of markup is used, a translator assists in mapping stripped comment
strings to doc-strings, to which a markup specifier is attached. While this specifier is arbitrary, the only
two values supported by the HTML and DocBook formatters are javadoc and rst(for ReStructuredText).

Note that this comment translation is specific to some programming languages (such as C, C++, and IDL).
Notably Python does provide a built-in facility to associate doc-strings to declarations. (In addition, the
doc-string markup can be expressed via special-purpose variable __docformat__ embedded into Python
source code.

4.7.3.Transformers
In addition to the manipulation of the comments themselves, there are actions that may be performed as a
result of processing-instructions embedded into comments.

For example, A Grouper transformer groups declarations together, based on special syntax:

 /** @group Manipulators {*/

 /**
 * Add a new control point.
 * @param p A point
 */
 void add_control_point(const Vertex &);

 /**
 * Remove the control point at index i.
 * @param i An index
 */

18

Processor Design

 void remove_control_point(size_t i);
 /** }*/
 virtual void draw();
 \

To process the above @group processing-instruction, run synopsis -p Cxx --cfilter=java
-l Grouper ...

4.8.The Dump Formatter
The Dump formatter's main goal is to provide a format that is as close to the ASG tree, is easily browsable
to the naked eye, and provides the means to do validation or other analysis.

It generates an xml tree that can be browsed via mozilla (it uses a stylesheet for convenient display), or it
can be analyzed with some special tools using xpath expressions.

It is used right now for all unit tests.

4.9.The DocBook Formatter
The DocBook formatter allows to generate a DocBook section from the given ASG.

Here are the most important parameters:

title The title to be used for the toplevel section.

nested_modules True if nested modules are to be formatted to nested sections. If False,
modules are flattened and formatted in sibling sections.

generate_summary If True, generate a summary section for each scope, followed by a de-
tails section.

with_inheritance_graph If True, generate SVG and PNG inheritance graphs for all classes. (use
the graph_color option to set the background color of the graph
nodes)

secondary_index_terms If True, add secondary entries in indexterms, with the fully
qualified names. This is useful for disambiguation when the same un-
qualified-id is used in multiple scopes.

4.10.The Dot Formatter
The Dot formatter can generate graphs for various types and output formats. Among the supported output
formats are png, svg, and html.

A typical use is the generation of UML class (inheritance and aggregation) diagrams:

19

Processor Design

But it can also be used to generate a graphical representation of file inclusions:

4.11.The HTML Formatter
The HTML formatter generates html output. It is designed in a modular way, to let users customize in
much detail how to format the data. All output is organized by a set of views, which highlight different
aspects of data. Some views show the file / directory layout, others group declarations by scopes, or provide
an annotated (and cross-referenced) source view.

By default the formatter generates its output using frames. The views are formatter parameters. index is
a list of views that fill the upper-left index frame. detail is a list of views for the lower-left detail frame,
and content sets all the views for the main content frame.

20

Processor Design

When the index and detail arguments are empty lists, non-framed html will be generated.

Here are the most important View types:

Scope The most important view for documentation purposes is doubtless the Scope
view. It presents all declaration in a given scope, together with a number of
references to other views if appropriate.

InheritanceGraph A UML-like inheritance diagram for all classes.

NameIndex A global index of all declared names (macros, variables, types, ...)

Source A cross-referenced view of a source file.

XRef A listing of symbols with links to their documentation, definition, and reference.

FileDetails Shows details about a given file, such as what other files are included, what
declarations it contains, etc.

Directory Presents a directory (of source files). This is typically used in conjunction with
the Source view above.

FileTree A javascript-based file tree view suitable for the index frame for navigation.

ModuleTree A javascript-based module tree view suitable for the index frame for navigation.

21

Processor Design

4.12.The SXR Formatter
The SXR formatter is a variant of the HTML formatter. However, as its focus is not so much documentation
as code navigation, there are a number of important differences. Its default set of views is different, and
instead of displaying listings of all identifiers on static html, it loads a database of (typed) identifiers and
provides an interface to query them.

It is to be used with an http server, either a default http server such as apache in conjunction with the sxi.cgi
script that is part of Synopsis, or by using the sxr-server program. The latter performs better, as the database
is kept in-process, while in case of sxi.cgi it needs to be reloaded on each query.

22

Processor Design

Appendix A. Description of program
options for the synopsis executable

Appendix A. Description of program
options for the synopsis executable

The synopsis executable is a little convenience frontend to the larger Synopsis framework consisting of
IR-related types as well as Processor classes.

While the full power of synopsis is available through scripting (see Chapter 3, Scripting And Extending
Synopsis), it is possible to quickly generate simple documentation by means of an easy-to-use executable,
that is nothing more but a little script with some extra command line argument parsing.

This tool has three processor types it can call:

Parser A processor that will parse source code into an internal abstract semantic graph (ASG).
Various Parsers have a variety of parameters to control how exactly they do that.

Linker A processor that will remove duplicate symbols, forward declarations, and apply any
number of ASG manipulations you want. The user typically specifies what sub-processors
to load to run from the linker.

Formatter A processor that generates some form of formatted output from an existing ASG, typically
html, docbook xml, or class graphs. Other formatters exist to assist debugging, such as a
List formatter that prints specific aspects of the IR to stdout, or a Dump formatter that
writes the IR to an xml file, useful for unit testing.

You can run synopsis with a single processor, for example to parse a C++ file source.hh and store the
ASG into a file source.syn, or you can combine it directly with linker and or formatter to generate the
output you want in a single call.

While the document generation in a single call is convenient, for larger projects it is much more sensible
to integrate the document generation into existing build systems and let the build system itself manage the
dependencies between the intermediate files and the source files.

For example, a typical Makefile fragment that contains the rules to generate documentation out of multiple
source files may look like this:

 hdr := $(wildcard *.h)
 syn := $(patsubst %.h, %.syn, $(hdr))

 html: $(syn)
 synopsis -f HTML -o $@ $<

 %.syn: %.h
 synopsis -p Cxx -I../include -o $@ $<
 \

23

Here is a listing of the most important available options:

-h, --help print out help message

-V, --version print out version info and exit

-v, --verbose operate verbosely

-d, --debug operate in debug mode

-o, --output output file / directory

-p, --parser select a parser

-l, --link link

-f, --formatter select a formatter

-I set an include search path

-D specify a macro for the parser

-W pass down additional arguments to a processor. For example '-Wp,-I.' sends the '-I.'
option to the parser.

--cfilter Specify a comment filter (See Section 4.7.1, “Comment Filters”).

--translate Translate comments to doc-strings, using the given markup specifier (See Section 4.7.2,
“Comment Translators”).

--sxr-prefix Specify the directory under which to store SXR info for the parsed source files. This
causes parsers to generate SXR info, the linker to generate an sxr Symbol Table, and
for the HTML formatter this causes Source and XRef views to be generated.

--probe This is useful in conjunction with the -p Cpp option to probe for system header
search paths and system macro definitions. (See Section 2.3, “Emulating A Compiler”).

24

Description of program options for the
synopsis executable

Appendix B. Listing of some Processors
and their parameters

This is a listing of all processors with their respective parameters that can be set as described in Section 3.4,
“Writing your own synopsis script”.

B.1. Synopsis.Parsers.Python.Parser
DescriptionDefault valueName
output profile dataFalseprofile
operate verboselyFalseverbose
should only primary file be processedTrueprimary_file_only
Path prefix (directory) to contain sxr info.Nonesxr_prefix
Path prefix to strip off of input file names.base_path
default documentation formatdefault_docformat
input files to process[]input
generate debug tracesFalsedebug
output file to save the ir tooutput

B.2. Synopsis.Parsers.IDL.Parser
DescriptionDefault valueName
output profile dataFalseprofile
list of preprocessor flags such as -I or -D[]cppflags
whether or not to preprocess the inputTruepreprocess
operate verboselyFalseverbose
path prefix to strip off of the file namesbase_path
should only primary file be processedTrueprimary_file_only
input files to process[]input
generate debug tracesFalsedebug
output file to save the ir tooutput

B.3. Synopsis.Parsers.Cpp.Parser
DescriptionDefault valueName
output profile dataFalseprofile
operate verboselyFalseverbose
source code programming language of the
given input file

C++language

path prefix to strip off of the filenamesNonebase_path
should only primary file be processedTrueprimary_file_only
filename for preprocessed fileNonecpp_output
list of preprocessor flags such as -I or -D[]flags
input files to process[]input
generate debug tracesFalsedebug
output file to save the ir tooutput
a compiler to emulateemulate_compiler

25

B.4. Synopsis.Parsers.C.Parser
DescriptionDefault valueName
output profile dataFalseprofile
list of preprocessor flags such as -I or -D[]cppflags
whether or not to preprocess the inputTruepreprocess
operate verboselyFalseverbose
path prefix (directory) to contain syntax infoNonesxr_prefix
path prefix to strip off of the file namesbase_path
should only primary file be processedTrueprimary_file_only
input files to process[]input
generate debug tracesFalsedebug
output file to save the ir tooutput
a compiler to emulateccemulate_compiler

B.5. Synopsis.Parsers.Cxx.Parser
DescriptionDefault valueName
output profile dataFalseprofile
list of preprocessor flags such as -I or -D[]cppflags
whether or not to preprocess the inputTruepreprocess
operate verboselyFalseverbose
path prefix (directory) to contain sxr infoNonesxr_prefix
path prefix to strip off of the file namesbase_path
should only primary file be processedTrueprimary_file_only
input files to process[]input
generate debug tracesFalsedebug
output file to save the ir tooutput
a compiler to emulateemulate_compiler

B.6. Synopsis.Processors.Linker
DescriptionDefault valueName
output profile dataFalseprofile
Remove empty modules.Trueremove_empty_modules
operate verboselyFalseverbose
input files to process[]input
generate debug tracesFalsedebug
output file to save the ir tooutput
Compile sxr data, if defined.sxr_prefix
Sort module content alphabetically.Truesort_modules
the list of processors this is composed of[]processors

B.7. Synopsis.Processors.MacroFilter
DescriptionDefault valueName
output profile dataFalseprofile
Regular expression to match macro names
with.

pattern

operate verboselyFalseverbose
input files to process[]input
generate debug tracesFalsedebug
output file to save the ir tooutput

26

Listing of some Processors and their
parameters

B.8. Synopsis.Processors.Comments.Filter
DescriptionDefault valueName
output profile dataFalseprofile
output file to save the ir tooutput
operate verboselyFalseverbose
generate debug tracesFalsedebug
input files to process[]input

B.9. Synopsis.Processors.Comments.Translator
DescriptionDefault valueName
output profile dataFalseprofile
Whether or not to concatenate adjacent
comments.

Falseconcatenate

Whether or not to preserve secondary com-
ments.

Trueprimary_only

operate verboselyFalseverbose
The markup type for this declaration.markup
A comment filter to apply.Synopsis.Processors.Com-

ments.Filter.SSFilter
filter

input files to process[]input
generate debug tracesFalsedebug
output file to save the ir tooutput
A comment processor to run.Noneprocessor

B.10. Synopsis.Formatters.Dot.Formatter
DescriptionDefault valueName
output profile dataFalseprofile
operate verboselyFalseverbose
list of table of content files to use for symbol
lookup

[]toc_in

Generate output in format "dot", "ps", "png",
"svg", "gif", "map", "html"

psformat

show aggregationFalseshow_aggregation
Prefix to strip from all class namesNoneprefix
input files to process[]input
hide operationsTruehide_operations
Direction of graphverticallayout
the title of the graphInheritance Graphtitle
hide attributesTruehide_attributes
base url to use for generated linksNonebase_url
background color for nodesNonebgcolor
generate debug tracesFalsedebug
output file to save the ir tooutput
type of graph (one of "file", "class", "single"classtype

B.11. Synopsis.Formatters.Dump.Formatter
DescriptionDefault valueName
output profile dataFalseprofile
output declarationsTrueshow_declarations
operate verboselyFalseverbose

27

Listing of some Processors and their
parameters

DescriptionDefault valueName
output typesTrueshow_types
stylesheet to be referenced for rendering/home/stefan/projects/Synop-

sis_0_8/Synopsis/../share/synop-
sis/dump.css

stylesheet

output object ids as attributesTrueshow_ids
input files to process[]input
generate debug tracesFalsedebug
output file to save the ir tooutput
output filesTrueshow_files

B.12. Synopsis.Formatters.DocBook.Formatter
DescriptionDefault valueName
output profile dataFalseprofile
add fully-qualified names to indexTruesecondary_index_terms
show inherited membersFalseinline_inherited_members
operate verboselyFalseverbose
title to be used in top-level sectionNonetitle
Map the module tree to a tree of docbook
sections.

Falsenested_modules

hide declarations without a doc-stringFalsehide_undocumented
generate scope summariesFalsegenerate_summary
whether inheritance graphs should be
generated

Truewith_inheritance_graphs

input files to process[]input
generate debug tracesFalsedebug
output file to save the ir tooutput
Markup-specific formatters.{rst: Synopsis.Formatters.Doc-

Book.Markup.RST, reStructured-
markup_formatters

Text: Synopsis.Formatters.Doc-
Book.Markup.RST, javadoc:
Synops i s .Format te r s .Doc-
Book.Markup.Javadoc}

base color for inheritance graphs#ffcc99graph_color

B.13. Synopsis.Formatters.Texinfo.Formatter
DescriptionDefault valueName
output profile dataFalseprofile
output file to save the ir tooutput
operate verboselyFalseverbose
generate debug tracesFalsedebug
input files to process[]input

B.14. Synopsis.Formatters.HTML.Formatter
DescriptionDefault valueName
output profile dataFalseprofile
operate verboselyFalseverbose
list of table of content files to use
for symbol lookup

[]toc_in

path prefix (directory) under
which to find sxr info

Nonesxr_prefix

28

Listing of some Processors and their
parameters

DescriptionDefault valueName
base color for inheritance graphs#ffcc99graph_color
input files to process[]input
how to lay out the output filesSynopsis.Formatters.HTML.Direct-

oryLayout.NestedDirectoryLayout
directory_layout

[S y n o p s i s . F o r m a t -
ters.HTML.Views.ModuleTree,

index

S y n o p s i s . F o r m a t -
ters.HTML.Views.FileTree]

Markup-specific formatters.{rst: Synopsis.Format-
ters.HTML.Markup.RST, reStruc-

markup_formatters

turedText: Synopsis.Format-
ters.HTML.Markup.RST, javadoc:
S y n o p s i s . F o r m a t -
ters.HTML.Markup.Javadoc}

title to put into html headerSynopsis - Generated Documentationtitle
[S y n o p s i s . F o r m a t -
ters.HTML.Views.ModuleIndex,

detail

S y n o p s i s . F o r m a t -
ters.HTML.Views.FileIndex]

name of file into which to store
the TOC

toc_out

stylesheet to be used/home/stefan/projects /Synop-
sis_0_8/Synopsis/../share/synop-
sis/html.css

stylesheet

generate debug tracesFalsedebug
output file to save the ir tooutput

[S y n o p s i s . F o r m a t -
ters.HTML.Views.Scope, Synop-

content

sis.Formatters.HTML.Views.Source,
S y n o p s i s . F o r m a t -
ters.HTML.Views.XRef, Synop-
sis.Formatters.HTML.Views.FileDe-
tails, Synopsis.Format-
ters.HTML.Views.InheritanceTree,
Synopsis.Formatters.HTML.Views.In-
heritanceGraph, Synopsis.Format-
ters.HTML.Views.NameIndex]

B.15. Synopsis.Formatters.SXR.Formatter
DescriptionDefault valueName
output profile dataFalseprofile
starting point for directory listingsrc_dir
operate verboselyFalseverbose
html template to be used by the sxr.cgi
script

/home/stefan/projects/Synop-
sis_0_8/Synopsis/../share/synop-
sis/sxr-template.html

sxr_template

title to put into html headerSynopsis - Cross-Referencetitle
the base url to use for the sxr cgi/sxr.cgiurl
path prefix (directory) to contain sxr infoNonesxr_prefix
TODO: define an exclusion mechanism
(glob based ?)

[]exclude

29

Listing of some Processors and their
parameters

DescriptionDefault valueName
stylesheet to be used/home/stefan/projects/Synop-

sis_0_8/Synopsis/../share/synop-
sis/html.css

stylesheet

input files to process[]input
generate debug tracesFalsedebug
output file to save the ir tooutput

30

Listing of some Processors and their
parameters

Appendix C. Supported Documentation
Markup

Synopsis can handle a variety of documentation markup through markup-formatter plugins. The most fre-
quently used markup types are built into the framework, and are available via the synopsis applet. These
are Javadoc (available as --translate=javadoc), and ReStructuredText (available as either
--translate=rst or --translate=reStructuredText).

C.1. Javadoc
Synopsis provides support for Javadoc-style markup (See http://java.sun.com/j2se/1.5.0/docs/tooldocs/sol-
aris/javadoc.html). However, as Javadoc is very HTML-centric, best results will only be achieved when
HTML is the only output-medium.

Javadoc comments consist of a main description, followed by tag blocks. Tag blocks are of the form @tag.
The following block tags are recognized:
author, date, deprecated, exception, invariant, keyword, param, postcondition, precondition, return, see,
throws, version

All blocks may contain any of the following inline tags, which are of the form {@inlinetag}:
link, code, literal

Link targets may be text, or HTML anchor elements. In case of text Synopsis interprets the it as a name-
id and attempts to look it up in its symbol table.

All of the above tags are recognized and translated properly for both, the HTML as well as the DocBook
formatters. Javadoc recommends to use HTML markup for additional document annotation. This is only
supported with the HTML formatter, however.

31

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/javadoc.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/javadoc.html

Example C.1. C++ code snippet using Javadoc-style comments.

/**
 * The Bezier class. It implements a Bezier curve
 * for the given order. See {@link Nurbs} for an alternative
 * curved path class. Example usage of the Bezier class:
 * <pre>
 * Bezier<2> bezier;
 * bezier.add_control_point(Vertex(0., 0.));
 * bezier.add_control_point(Vertex(0., 1.));
 * ...
 * </pre>
 *
 * @param Order The order of the Bezier class.
 * @see
 */
template <size_t Order>
class Bezier : public Path
{
...
 \

C.2. ReStructured Text
Synopsis supports the full set of ReStructuredText markup (See http://docutils.sourceforge.net/docs/ref/rst/re-
structuredtext.html). In order to process ReST docstrings, docutils 0.4 or higher must be installed. If Docutils
is not installed, ReST docstrings will be rendered as plaintext.

ReST provides a wide variety of markup that allows documentation strings to be formatted in a wide
variety of ways. Among the many features are different list styles, tables, links, verbatim blocks, etc.

Interpreted text1 is used to mark up program identifiers, such as the names of variables, functions, classes,
and modules. Synopsis will attempt to look them up in its symbol table, and generate suitable cross-refer-
ences.

1 http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#interpreted-text

32

Supported Documentation Markup

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#interpreted-text

Example C.2. C++ code snippet using ReST-style comments.

//. The Nurbs class. It implements a nurbs curve
//. for the given order. It is a very powerful
//. and flexible curve representation. For simpler
//. cases you may prefer to use a `Paths::Bezier` curve.
//.
//. While non-rational curves are not sufficient to represent a circle,
//. this is one of many sets of NURBS control points for an almost \
uniformly
//. parameterized circle:
//.
//. +--+----+-------------+
//. |x | y | weight |
//. +==+====+=============+
//. |1 | 0 | 1 |
//. +--+----+-------------+
//. |1 | 1 | `sqrt(2)/2` |
//. +--+----+-------------+
//. |0 | 1 | 1 |
//. +--+----+-------------+
//. |-1| 1 | `sqrt(2)/2` |
//. +--+----+-------------+
//. |-1| 0 | 1 |
//. +--+----+-------------+
//. |-1| -1 | `sqrt(2)/2` |
//. +--+----+-------------+
//. |0 | -1 | 1 |
//. +--+----+-------------+
//. |1 | -1 | `sqrt(2)/2` |
//. +--+----+-------------+
//. |1 | 0 | 1 |
//. +--+----+-------------+
//.
//. The order is three, the knot vector is {0, 0, 0, 1, 1, 2, 2, 3, 3, \
4, 4, 4}.
//. It should be noted that the circle is composed of four quarter \
circles,
//. tied together with double knots. Although double knots in a third \
order NURBS
//. curve would normally result in loss of continuity in the first \
derivative,
//. the control points are positioned in such a way that the first \
derivative is continuous.
//. (From Wikipedia_)
//.
//. .. _Wikipedia: http://en.wikipedia.org/wiki/NURBS
//.
//. Example::
//.
//. Nurbs<3> circle;
//. circle.insert_control_point(0, Vertex(1., 0.), 1.);

33

Supported Documentation Markup

//. circle.insert_control_point(0, Vertex(1., 1.), sqrt(2.)/2.);
//. ...
//.
 \

To see how this is formatted please refer to the DocBook example2.

2 http://synopsis.fresco.org/docs/examples/index.html#docbook

34

Supported Documentation Markup

http://synopsis.fresco.org/docs/examples/index.html#docbook

	Synopsis Tutorial
	Table of Contents
	Chapter 1. Introduction
	1.1. Inspecting Code
	1.2. Internal Representations
	1.3. Documenting Source-Code
	1.4. The Synopsis Processing Pipeline

	Chapter 2. Using the synopsis tool
	2.1. Option Handling
	2.2. Parsing Source-code
	2.3. Emulating A Compiler
	2.4. Using Comments For Documentation

	Chapter 3. Scripting And Extending Synopsis
	3.1. The ASG
	3.2. The Processor class
	3.3. Composing A Pipeline
	3.4. Writing your own synopsis script
	3.4.1. Importing all desired processors
	3.4.2. Composing new processors
	3.4.3. Defining New Processors
	3.4.4. Exposing The Commands

	Chapter 4. Processor Design
	4.1. The Python Parser
	4.2. The IDL Parser
	4.3. The Cpp Parser
	4.4. The C Parser
	4.5. The Cxx Parser
	4.6. The Linker
	4.7. Comment Processors
	4.7.1. Comment Filters
	4.7.2. Comment Translators
	4.7.3. Transformers

	4.8. The Dump Formatter
	4.9. The DocBook Formatter
	4.10. The Dot Formatter
	4.11. The HTML Formatter
	4.12. The SXR Formatter

	Appendix A. Description of program options for the synopsis executable
	Appendix B. Listing of some Processors and their parameters
	B.1. Synopsis.Parsers.Python.Parser
	B.2. Synopsis.Parsers.IDL.Parser
	B.3. Synopsis.Parsers.Cpp.Parser
	B.4. Synopsis.Parsers.C.Parser
	B.5. Synopsis.Parsers.Cxx.Parser
	B.6. Synopsis.Processors.Linker
	B.7. Synopsis.Processors.MacroFilter
	B.8. Synopsis.Processors.Comments.Filter
	B.9. Synopsis.Processors.Comments.Translator
	B.10. Synopsis.Formatters.Dot.Formatter
	B.11. Synopsis.Formatters.Dump.Formatter
	B.12. Synopsis.Formatters.DocBook.Formatter
	B.13. Synopsis.Formatters.Texinfo.Formatter
	B.14. Synopsis.Formatters.HTML.Formatter
	B.15. Synopsis.Formatters.SXR.Formatter

	Appendix C. Supported Documentation Markup
	C.1. Javadoc
	C.2. ReStructured Text

